
WFC 50 – Natural History of California’s Wild Vertebrates. (F&S) Examination of the natural history of CA’s wild vertebrates, including their biogeography, systematics, ecology, and conservation status.

WFC 100 – Field Methods in Wildlife, Fish, and Conservation Biology. (S) Introduction to field methods for monitoring and studying wild vertebrates and their habitats, with an emphasis on ecology and conservation. Required weekend field trips.

WFC 103– Wildlifer’s Quantitative Toolkit. (W) Fish and wildlife science relies on our ability to enumerate things (animals, habitat, etc.) and explain patterns in those numbers. These patterns help us understand how organisms react to their environment. This course introduces principles of developing research projects, basic probability theory, and statistical estimation and mathematical modeling, in the context of fish and wildlife research. It fosters an understanding of the quantitative nature of this area of research.

WFC 110/110L – Laboratory in Biology and Conservation of Wild Mammals. (S) Laboratory exercises in the morphology, systematics, species identification, anatomy, and adaptations of wild mammals to different habitats.

WFC 111/111L – Laboratory in Biology and Conservation of Wild Birds. (F) Laboratory exercises in bird species identification, anatomy, molts, age and sex, specialized adaptations, behavior, research, with emphasis on conservation of wild birds.

WFC 120/120L – Biology and Conservation of Fishes. (F) Evolution, ecology, and conservation of marine and freshwater fishes. Lab portion teaches morphology, taxonomy, conservation, and identification of marine and freshwater fishes with emphasis on California species.

WFC 124– Sampling Animal Populations. (S) Understanding species distribution, habitat use, population size and dynamics is key to wildlife ecology, management and conservation. Learn about state-of-the-art statistical methods to estimate these and other important parameters from typical field survey data, while getting hands-on experience in R.

WFC 130 – Physiological Ecology of Wildlife. (W) Principles of physiological ecology, emphasizing vertebrates. Ecological, evolutionary, and behavioral perspectives on physiological mechanisms used by animals to adapt to their environment, in the context of climate-change and other threats to biodiversity. Tropical, temperate, and polar ecosystems are highlighted.
WFC 134/134L- Herpetology Laboratory. (W) Evolution and Ecology 101 or Environmental Science and Policy 100 or equivalent upper division course recommended; course 134 concurrently; consent of instructor. Diagnostic characteristics and functional attributes of amphibians and reptiles, emphasizing ecological, bio-geographic and phylogenetic patterns. Field experience with common species of reptiles and amphibians in the Davis area.

WFC 151 – Wildlife Ecology. (F) Ecology of wild vertebrates, including habitat selection, spatial organization, demography, population growth and regulation, competition, predation, and community dynamics, set in the context of human-caused degradation of environments in North America.

WFC 154 – Conservation Biology. (W) Introduction to conservation biology and the biological issues and controversies surrounding the loss of species and habitats.

WFC 168- Climate Change Ecology. (W) Ecological responses of individuals, populations, and communities to environmental variation, with emphasis on climate change.
Wildlife, Fish, & Conservation Biology
Teaching Assistant and Reader Application
Academic Year 2021-2022

Name: ______________________
Home Address: ______________________
Telephone: ______________________
Email: ______________________
Student ID#: ______________________

___ Current Full-Time Registered Grad
Student
___ Entering Fall 2021

Home Department: ______________________
Graduate Program: ______________________
Major Professor: ______________________

____ I plan to attend TA orientation in September 2021.
____ I have previously completed TA orientation.

List course numbers for which you are qualified and seek appointment, in order of personal
priority. Justify each of your choices on the next page.

COURSE and AVAILABILITY

Fall 2021:

Winter 2022:

Spring 2022:

SUMMARY OF ALL TEACHING EXPERIENCE, INCLUDING UCD. Indicate TA or Reader.

<table>
<thead>
<tr>
<th>Institution</th>
<th>Course</th>
<th>Quarter/Year</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GPA (minimum 3.00 required; specify institution if other than UCD): UG _____ G _____

List of attachments recommended: (IT IS THE STUDENT'S RESPONSIBILITY TO COMPLETE THIS FILE.)
Graduate and undergraduate transcripts, if available. Summaries of evaluations from previous teaching experience, as available. Current letters of recommendation, optional.

NOTE: New students need not submit letters of recommendation or transcripts separately from those originally submitted with their application materials. Submit your file to Erica Cefalo at emcefalo@ucdavis.edu

Describe why you are particularly well qualified to teach or read for each of the courses you’ve identified in this application; you may combine courses with similar requirements. BE SPECIFIC. Please include relevant course preparation, field experience, or prior teaching qualifications. Attach additional pages, as needed.